Fluorene Oxidation In Vivo by Phanerochaete chrysosporium and In Vitro during Manganese Peroxidase-Dependent Lipid Peroxidation.

نویسندگان

  • B W Bogan
  • R T Lamar
  • K E Hammel
چکیده

The oxidation of fluorene, a polycyclic hydrocarbon which is not a substrate for fungal lignin peroxidase, was studied in liquid cultures of Phanerochaete chrysosporium and in vitro with P. chrysosporium extracellular enzymes. Intact fungal cultures metabolized fluorene to 9-hydroxyfluorene via 9-fluorenone. Some conversion to more-polar products was also observed. Oxidation of fluorene to 9-fluorenone was also obtained in vitro in a system that contained manganese(II), unsaturated fatty acid, and either crude P. chrysosporium peroxidases or purified recombinant manganese peroxidase. The oxidation of fluorene in vitro was inhibited by the free-radical scavenger butylated hydroxytoluene but not by the lignin peroxidase inhibitor NaVO(inf3). Manganese(III)-malonic acid complexes could not oxidize fluorene. These results indicate that fluorene oxidation in vitro was a consequence of lipid peroxidation mediated by P. chrysosporium manganese peroxidase. The rates of fluorene and diphenylmethane disappearance in vitro were significantly faster than those of true polycyclic aromatic hydrocarbons or fluoranthenes, whose rates of disappearance were ionization potential dependent. This result indicates that the initial oxidation of fluorene proceeds by mechanisms other than electron abstraction and that benzylic hydrogen abstraction is probably the route for oxidation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipid Peroxidation by the Manganese Peroxidase of Phanerochaete chrysosporium Is the Basis for Phenanthrene Oxidation

The manganese peroxidase (MnP) of Phanerochaete chrysosporium supported Mn(II)-dependent, H202independent lipid peroxidation, as shown by two findings: linolenic acid was peroxidized to give products that reacted with thiobarbituric acid, and linoleic acid was peroxidized to give hexanal. MnP also supported the slow oxidation of phenanthrene to 2,2'-diphenic acid in a reaction that required Mn(...

متن کامل

Lipid Peroxidation by the Manganese Peroxidase of Phanerochaete chrysosporium Is the Basis for Phenanthrene Oxidation by the Intact Fungus.

The manganese peroxidase (MnP) of Phanerochaete chrysosporium supported Mn(II)-dependent, H(2)O(2)-independent lipid peroxidation, as shown by two findings: linolenic acid was peroxidized to give products that reacted with thiobarbituric acid, and linoleic acid was peroxidized to give hexanal. MnP also supported the slow oxidation of phenanthrene to 2,2'-diphenic acid in a reaction that require...

متن کامل

One-electron oxidation in the degradation of creosote polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium.

The abilities of whole cultures of Phanerochaete chrysosporium and P. chrysosporium manganese peroxidase-mediated lipid peroxidation reactions to degrade the polycyclic aromatic hydrocarbons (PAHs) found in creosote were studied. The disappearance of 12 three- to six-ring PAHs occurred in both systems. Both in vivo and in vitro, the disappearance of all PAHs was found to be very strongly correl...

متن کامل

Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium.

mRNA extraction from soil and quantitation by competitive reverse transcription-PCR were combined to study the expression of three manganese peroxidase (MnP) genes during removal of polycyclic aromatic hydrocarbons from cultures of Phanerochaete chrysosporium grown in presterilized soil. Periods of high mnp transcript levels and extractable MnP enzyme activity were temporally correlated, althou...

متن کامل

Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes.

The ability of Phanerochaete laevis HHB-1625 to transform polycyclic aromatic hydrocarbons (PAHs) in liquid culture was studied in relation to its complement of extracellular ligninolytic enzymes. In nitrogen-limited liquid medium, P. laevis produced high levels of manganese peroxidase (MnP). MnP activity was strongly regulated by the amount of Mn2+ in the culture medium, as has been previously...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 62 5  شماره 

صفحات  -

تاریخ انتشار 1996